Biomechanism Profile of Intervertebral Disc’s (IVD): Strategies to Successful Tissue Engineering For Spinal Healing by Reinforced Composite Structure

نویسندگان

  • Kunal Singha
  • Mrinal Singha
چکیده

Complex multi-lamellar biocomposite structure of Intervertebral Disc (IVD) imparts flexibility between adjacent vertebras, as well as allows transmission of loads from one vertebra to the next along the spine. The disc has a 1525 concentric layered laminate structure; each layer is reinforced by collagen fibers which are aligned at approximately 30 degree angle in successive layers with respect to the transverse plane of the disc. This fibrous organization is critical to the proper biomechanical functioning of the disc, such as to convert compressive force to lateral force, to withstand extrinsic tensile stresses (circumferential, longitudinal and torsion). As a result spine becomes flexible to bend and twist. With the regular aging the disc gets dried up lost its flexibility and biomechanical elasticity. That’s why we need tissue engineering of that degenerated tissue to make a proper ailment of that body part by the help of some textile fibers like silkhydrogel, CMC, PVAcollagen, PGA – chitosan composites. The synthetic polymer has shown great promise for easiness of production, variability in properties and biodegradability and biocompatibity and non-immunogenic response inside the human spinal body for the novel cause of removal and restoration of degenerated human intervertebral disc. Citation: Singha K, Singha M (2012) Biomechanism Profile of Intervertebral Disc’s (IVD): Strategies to Successful Tissue Engineering for Spinal Healing by Reinforced Composite Structure. J Tissue Sci Eng 3:118. doi:10.4172/2157-7552.1000118

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair.

The degeneration of the intervertebral disc (IVD) within the spinal column represents a major pain source for many patients. Biological restoration or repair of the IVD using "compressive-force-resistant" and at the same time "cytocompatible" materials would be desirable over current purely mechanical solutions, such as spinal fusion or IVD implants. This review provides an overview of recent r...

متن کامل

سلول درمانی در بازسازی دیسک بین مهره‌ای: مقاله مروری

Intervertebral disks (IVD) acts as shock absorber between each of the vertebrae in the spinal column by keeping the vertebrae separated when the shock caused by the action. They also serve to protect the nerves that run down the middle of the spine and intervertebral disks. The disks are made of fibrocartilaginous material. The outside of the disk is made of a strong material called the annulus...

متن کامل

Vertebral Bodies Increase in Volume in Response to In Vivo Long-Term Dynamic Compression

INTRODUCTION Loads experienced by the spinal column are transferred from one vertebral body to the next through the intervertebral disc (IVD) and the vertebral endplates. Prolonged repetitive loading is likely to influence the biological and mechanical response of the vertebrae as well as the IVD. A rat tail model allows for the study of interactions between IVDs and vertebrae in vivo because o...

متن کامل

Advanced tissue engineering in periodontal Regeneration

The old wishes of people were to regenerate lost tissues of periodontium that this fact is achieved by gen and cell therapy .Periodontal disease is a chronic inflammation around the tooth by microbes that causes destruction of supporting structure of tissue of tooth such as alveolar bone, cementum and periodontal ligament. For treatment of periodontal diseases we can use the biomaterials which ...

متن کامل

The Role of Annulus Fibrosus Composition on the Mechanical Properties of Tissue Engineered IVD

INTRODUCTION Intervertebral disc (IVD) tissue engineering has been the focus of much recent interest. In particular, several groups [1,2] have attempted to reconstruct an intact IVD for transplant. A significant challenge in this effort has been mimicking the aligned collagen structure of the annulus fibrosus (AF). Recently we reported the use of controlled collagen gel contraction as a vehicle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012